Abstract

A wide range of additive manufacturing (AM) processing conditions can be rapidly realized within a single specimen via high-speed direct energy deposition laser based (DED-LB), due to a variety of cooling conditions and in-situ powder mixing. Since existing approaches are inefficient in exploring the vast material and process design space in AM, high-speed DED-LB can be employed as a novel technology for high-throughput alloy design tool. However, an evaluation of the process transferability of the high-speed DED-LB process with respect to the currently dominating metal AM technologies, namely laser powder bed fusion (PBF LB/M) and conventional DED-LB, is required. In this study, high-speed DED-LB is applied for the high-throughput sample production, using the nickel alloy IN718 as reference material as well as the AM processes PBF LB/M and DED-LB as reference processes. The resulting microstructures are characterized and compared using optical microscopy and large-area scanning electron microscopy (SEM) analysis combined with energy-dispersive X-ray spectroscopy (EDS). Furthermore, a model for calculation of the volumetric energy density is developed to compare the applied AM processes. The significant influence of the processing conditions on the solidification behavior of the investigated material allows for efficient exploration of the microstructure and phase composition. Specific high-speed DED-LB-process conditions achieved the average solidification cell size and laves phase content as observed in the PBF LB/M- and DED-LB -produced counterparts. The applicability of the high-speed DED-LB process for rapid alloy and process development, i.e., process transferability, is critically evaluated. The results show that high-speed DED-LB can be used to emulate cooling conditions of PBF-LB/M and DED-LB and, therefore, be used as tool for rapid alloy development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.