Abstract
Electron beam powder bed fusion offers the unique opportunity to observe the process by measuring scattered electrons on a metal detector. This technique is the state of the art in generating electron optical images of the build area after melting using single- or multi-detector setups. The images enable the detection of surface defects like porosity or material transport by reconstructing the surface topography. Internal defects such as layer-bonding defects cannot be identified. Many of these defects, particularly layer-bonding defects, often originate from an irregular distribution of the powder bed.This work introduces an additional process step by recording an electron optical image after the distribution of the powder bed. Combining this with an electron optical image after melting the previous layer enables extraction of powder bed features such as the current powder bed height. The underlying method bases on the correlation of experimental measurements and numerical simulations of the intensity of the electron optical signal for different powder bed heights. With this approach, it is possible to identify irregular powder distributions, such as uncovered areas of previously molten material or locally varying powder bed heights. This information is crucial for online monitoring and real time process control. Exemplary, this opens the opportunity of healing the powder bed by an additional raking step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.