Abstract

Capacitive deionization (CDI) is considered as a promising approach to sustain fresh water supply with environmental friendliness and convenient electrode regeneration. As a novel CDI system, flow-through electrode (FTE) CDI is drawing researchers' attention due to its structural simplicity, highly compact cells, cost effectiveness, and fast salt adsorption kinetics that are applicable for large-scale desalination of saline water. However, the FTE CDI architecture requires electrodes with robust structures and preferable permeability, considering the direct flow through mechanism, which limits their choices of electrode materials. Herein, we propose a facial electrospinning method to fabricate three-dimensional TiO2 encapsulated carbon nanofiber (TiO2@CNF), which possesses good mechanical stability and highly permeable macroporous-mesoporous structure to endure the reasonable feed pressure upon high-speed influent flushing. Moreover, the TiO2@CNF electrode shows evident pseudo-capacitive performance as well as high electrical conductivity. By integrating the features of both the TiO2@CNF and the FTE CDI architecture, the as-fabricated system displays a salt removal capacity of 15.50 mg g−1 and a desalination rate of 1.26 mg g−1 min−1 at 1.4 V. The TiO2@CNF provides a promising alternative for FTE CDI towards the future desalination technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.