Abstract

This paper presents a design methodology for high-speed Booth encoded parallel multiplier. For partial product generation, we propose a new modified Booth encoding (MBE) scheme to improve the performance of traditional MBE schemes. For final addition, a new algorithm is developed to construct multiple-level conditional-sum adder (MLCSMA). The proposed algorithm can optimize final adder according to the given cell properties and input delay profile. Compared with a binary tree-based conditional-sum adder, the speed performance improvement is up to 25 percent. On average, the design developed herein reduces the total delay by 8 percent for parallel multiplier. The whole design has been verified by gate level simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call