Abstract

Achieving high spinning speed is critical to the production efficiency and viable application of fiber species. Graphene fiber (GF) has recently emerged as a carbonaceous fiber with excellent functionality. However, the extremely low wet spinning speed of GF has limited its applications. We realized high-speed blow spinning of neat GF and fabric by modulating the rheological properties of the graphene oxide (GO) dispersion. We achieved a speed of 556 m min-1, 2 orders of magnitude faster than that for wet spinning. We chose ultrahigh molecular weight polymers as transient additives to circumvent the intrinsic barrier effect of GO and achieve high spinning dope stretchability at low polymer percentages-down to 25 wt %. Minimizing the polymer additive content ensures the high electrical/thermal conductivity of the blow-spun fiber and fabric. This work provides insight into the unique flow properties of 2D sheets and will promote the efficient production of graphene-based fibrous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.