Abstract

AbstractThe structure and properties of fibers prepared from copolymers of poly(ethylene terephthalate) (PET) in which 2‐methyl‐1,3‐propanediol (MPDiol® Glycol is a registered trademark of Lyondell Chemical Company) at 4, 7, 10, and 25 mol% was substituted for ethylene glycol were studied and compared with those of PET homopolymer. Filaments were melt spun over a range of spinning conditions, and some filaments that were spun at relatively low spinning speeds were subjected to hot drawing. The filaments were characterized by measurements of birefringence, differential scanning calorimetry (DSC) crystallinity, melting point, glass transition temperature, wide‐angle X‐ray diffraction patterns, boiling water shrinkage, tenacity, and elongation to break. Filaments containing 25 mol% MPDiol did not crystallize in the spinline at any spinning speed investigated, whereas the other resins did crystallize in the spinline at high spinning speeds. However, compared with PET homopolymer, increasing substitution of MPDiol reduced the rate at which the crystallinity of the melt spun filaments increased with spinning speed and reduced the ultimate crystallinity that could be achieved by high‐speed spinning. The rate of development of molecular orientation, as measured by birefringence, also decreased somewhat with increasing MPDiol content. Shrinkage in boiling water decreased at high spinning speeds as the amount of crystallinity increased; however, the shrinkage decreased more slowly with increase in spinning speed as MPDiol content increased. Tenacity also decreased slightly at any given spinning speed as MPDiol content increased, but there was no significant effect on elongation to break. The addition of MPDiol in amounts up to 7 mol% increased the maximum take‐up velocity that could be achieved at a given mass throughput. This result indicates that the use of higher spinning speeds could potentially increase the productivity of melt spun yarns. Copolymer filaments spun at low speeds were readily drawn to produce highly oriented fibers with slightly less birefringence, crystallinity, and tenacity than similarly processed PET homopolymer. Preliminary dyeing experiments showed that the incorporation of MPDiol improved the dyeability of the filaments. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2598–2606, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call