Abstract
Few studies have focused on the spatial distribution of the typical components and source tracers of PM2.5 and their associated health risks, despite the fact that the chemical components of PM2.5 pose potentially significant and independent risks to human health. The main objective of this study was to evaluate the spatial distribution of major PM2.5 components and their associated health risks in Hong Kong using a coupled land use regression and health risk assessment modeling approach. The established land use regression models of the major PM2.5 components and source tracers achieved a relatively high statistical performance, with training and leave-one-out cross-validation R2 values of 0.85–0.96 and 0.62–0.88, respectively. The high spatial resolution (500 m × 500 m) distribution patterns of the chemical components of PM2.5 showed the heterogeneity of population exposure to different components and the related potential health risks, as evidenced by the weak spatial correlations between the mass of PM2.5 and some components. Elemental carbon, nickel, arsenic, and chromium from PM2.5 made major contributions to the total health risk and should therefore be reduced further. Our results will enable researchers to determine independent associations between exposure to the various components of PM2.5 and health endpoints in epidemiological studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have