Abstract
Mid-infrared (MIR) dual-comb spectroscopy (DCS) is a highly effective method for molecular metrology of rovibrational transition spectra in a quick accurate manner. However, due to limited comb frequency instability, manipulating coherence between two frequency combs to accomplish high-quality spectral analysis in the MIR region is a huge challenge. Here, we developed a comb-teeth resolved MIR DCS based on active phase control cooperating with a CWs-dependent (CWD) interferogram timing correction. Firstly, four meticulously engineered actuators were individually integrated into two near-infrared (NIR) seed combs to facilitate active coherence maintenance. Subsequently, two PPLN waveguides were adopted to achieve parallel difference frequency generations (DFG), directly achieving a coherent MIR dual-comb spectrometer. To improve coherence and signal-to-noise ratio (SNR), a CWD resampled interferogram timing correction was used to optimize the merit of DCS from 7.5 × 105 to 2.5 × 106. Meanwhile, we carried out the measurement of MIR DCS on the methane hot-band absorption spectra (v3 band), which exhibited a good agreement with HITRAN by a standard deviation on recording residual of 0.76%. These experimental results confirm that this MIR DCS with CWD interferogram timing correction has significant potential to characterize the rovibrational transitions of MIR molecules.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have