Abstract

ABSTRACTWe report on the use of lithium ion (Li+) drifting1 as a sensitive means to study Si self-interstitial (SiI) diffusion.2 Li+ properties in silicon are well known from extensive ion drift studies and Li+ interactions with dopants and point defects.3 We have used this low temperature (∼100°C) technique in combination with Si1 injection from oxides to delineate, identify and eliminate D defects4 in certain p-type floating zone (FZ) Si single crystals.5 Our results suggest Si1 diffusion occurs to a depth of at least 10 mm into the bulk during phosphorus (P) diffusion with oxidation (i.e., POCI3 process) at 950°C for 100 min. Process modeling of this lower bound SiI diffusion using SUPREM-IV9 results in a Sii diffusivity of 3.5×10−6 cm2/s at 950°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.