Abstract
High shear mixers (HSMs), characterized by their highly localized energy dissipation, are widely used in process industries for dispersed phase size reduction and reactive mixing. Research findings on typical applications of HSMs have been summarized in this paper, namely liquid–liquid emulsification, solid–liquid suspension and chemical reactions, with an emphasis on the emulsification due to relatively intensive research in this area. The design and control of HSMs as chemical reactors need comprehensive knowledge of both the reactions kinetics and the HSMs hydrodynamics. Therefore, hydrodynamics of HSMs in terms of power draw, flow pattern and energy dissipation are then particularly reviewed from both experimental fluid dynamics (EFD) measurements and computational fluid dynamics (CFD) simulations. Limited reports on the mass and heat transfer properties in HSMs are also introduced to demonstrate their potential applicability to intensify chemical reaction processes. Due to difficulties and challenges emerged in the experimentations, CFD tools play an important role in the design, optimization and scale-up of HSMs, yet the prediction accuracies still need to be improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical Engineering and Processing: Process Intensification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.