Abstract

Conventional photon detectors necessarily face critical challenges regarding strong wavelength-selective response and narrow spectral bandwidth, which are undesirable for spectroscopic applications requiring a wide spectral range. With this perspective, herein, we overcome these challenges through a free-carrier absorption-based waveguide-integrated bolometer for infrared spectroscopic sensors on a silicon-on-insulator (SOI) platform featuring a spectrally flat response at near-infrared (NIR) range (1520-1620 nm). An in-depth thermal analysis was conducted with a systematic investigation of geometry dependence on the detectors. We achieved great performances: temperature coefficient of resistance (TCR) of -3.786%/K and sensitivity of -26.75%/mW with a low wavelength dependency, which are record-high values among reported waveguide bolometers so far, to our knowledge. In addition, a clear on-off response with the rise/fall time of 24.2/29.2 µs and a 3-dB roll-off frequency of ∼22 kHz were obtained, sufficient for a wide range of sensing applications. Together with the possibility of expanding an operation range to the mid-infrared (MIR) band, as well as simplicity in the detector architecture, our work here presents a novel strategy for integrated photodetectors covering NIR to MIR at room temperature for the development of the future silicon photonic sensors with ultrawide spectral bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.