Abstract

On-chip optical power monitors are essential elements to calibrate, stabilize, and reconfigure photonic integrated circuits. Many applications require in-line waveguide detectors, where a trade-off has to be found between large sensitivity and high transparency to the guided light. In this work, we demonstrate a transparent photoconductor integrated on standard low-doped silicon-on-insulator waveguides that reaches a photoconductive gain of more than 106 and an in-line sensitivity as high as -60 dBm. This performance is achieved by compensating the effect of electric charges in the cladding oxide through a bias voltage applied to the chip substrate or locally through a gate electrode on top of the waveguide, allowing one to tune on demand the conductivity of the core to the optimum level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.