Abstract

The fast-emerging diverse applications using a variety of magnetic/non-magnetic heterostructure ultra-thin films warrant the sensitive characterization of the electrical, optical, and magnetic properties of the interface. As a practical alternate to the conventional magneto-optic Kerr effect (MOKE) method, we propose and demonstrate the spin-Hall effect of the light (SHEL)-based MOKE method with competitive sensitivity and scope for further improvement. The SHEL-MOKE technique is a versatile surface characterization tool for studying materials’ magnetic and dielectric ordering, which are extracted from the variations to the phase-polarization characteristics of a focused beam of light reflected at the interface, as a function of the applied magnetic field. Using this technique, we measure the magnetic field dependent complex Kerr angle and the coercivity in ultra-thin films of permalloy (Py) and at molybdenum disulfide (MoS2)—permalloy (MSPy) hetero-structure interfaces. A comprehensive theoretical model and simulation data are provided to strengthen the potential of this simple non-invasive optical method. The theoretical model is subsequently applied to extract the optical conductivity of non-magnetic ultra-thin layers of MoS2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.