Abstract

In this work, based on the dual catalytic properties of copper (Cu) particles for methanol oxidation and persulfate initiated radical polymerization, a temperature-controlled catalytic electrode, defined the PNIPAM-Cu@CP, was constructed by electrodepositing Cu particles on a carbon paper electrode and triggering the polymerization of the temperature-sensitive polymer N-isopropylacrylamide (PNIPAM) on the surface of the electrode, which is expected to be applicated in the micro-direct methanol fuel cell (DMAC) for detection of methanol crossover and also has temperature recognition and high-temperature self-protection functions. Cu particles and PNIPAM were characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) for their specific structure and morphology. The cyclic voltammetry (CV) results showed the proposed electrode as a temperature-controlled switch-like methanol sensor, has a wide linear range (1–300 mM and 300–1200 mM), excellent sensitivity (72.8 μA cm−2 mM−1 and 11.5 μA cm−2 mM−1) and a low detection limit of 0.3 mM for methanol. In addition, the sensor also has excellent selectivity and temperature-triggered switchable electrocatalytic activity. The efficient and simple preparation method of the electrode is expected to be used in the development of a methanol sensor for real-time methanol detection in micro-DMAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.