Abstract

We report the development of a high-sensitivity laser absorption diagnostic optimized for measurement of the hydroxyl radical (OH) at temperatures relevant to combustion studies, and demonstrated here in shock tube experiments. This diagnostic utilizes a narrow-linewidth CW UV laser that is tunable over the A2Σ – X2Π (0,0) band of the OH rovibronic transitions. First, we identified the strongest absorption transition of OH, over the current temperature range of interest, to be the Q1(5) transition near 308.61 nm. We then measured the OH absorption coefficients behind reflected shock waves over temperatures of 1656–2993 K and pressures of 0.88–4.09 atm, and determined the pressure-broadening and pressure-shifting coefficients in argon bath gas. Compared to the previous diagnostic targeting the OH R1(5) transition, the current diagnostic has approximately 2.2 times the sensitivity. Finally, we demonstrated the excellent sensitivity of the current OH diagnostic in a set of highly-diluted C3H8 oxidation experiments in a shock tube, where a 1 − σ detection limit of less than 0.15 ppm OH was successfully achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.