Abstract
In two-dimensional supersonic gasdynamics, one of the classical steady-state problems, which include shock waves and other discontinuities, is the problem concerning the oblique reflection of a shock wave from a plane wall. It is well known [1–3] that two types of reflection are possible: regular and Mach. The problem concerning the regular reflection of a magnetohydrodynamic shock wave from an infinitely conducting plane wall is considered here within the scope of ideal magnetohydrodynamics [4]. It is supposed that the magnetic field, normal to the wall, is not equal to zero. The solution of the problem is constructed for incident waves of different types (fast and slow). It is found that, depending on the initial data, the solution can have a qualitatively different nature. In contrast from gasdynamics, the incident wave is reflected in the form of two waves, which can be centered rarefaction waves. A similar problem for the special case of the magnetic field parallel to the flow was considered earlier in [5, 6]. The normal component of the magnetic field at the wall was equated to zero, the solution was constructed only for the case of incidence of a fast shock wave, and the flow pattern is similar in form to that of gasdynamics. The solution of the problem concerning the reflection of a shock wave constructed in this paper is necessary for the interpretation of experiments in shock tubes [7–10].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.