Abstract

The cycloplatinated(IV) complexes trans-[Pt(p-MeC6H4)(C∧N)(OAc)2(H2O)] (C∧N = benzo[h]quinolate, bhq, 2a, and 2-phenylpyridinate, ppy, 2b) were prepared by reacting the corresponding [Pt(p-MeC6H4)(C∧N)(SMe2)] precursors with PhI(OAc)2 through an oxidative addition (OA) reaction. Thermolysis of 2a at 65 °C generates cis-[Pt(κ1N-10-(p-MeC6H4)-bhq)(OAc)2(H2O)], 3a, which is the product of a Csp2Ar-Csp2bhq reductive elimination (RE). The observed coupling reaction is significantly different from the previously reported analogous thermolysis of trans-[PtMe(C∧N)(OAc)2(H2O)] (C∧N = bhq, 2c, and ppy, 2d) that selectively releases Me-OAc (C-O RE). The density functional theory (DFT) calculations and experimental observations reveal that the Csp2Ar-Csp2bhq coupling reaction occurs through the dissociation of a coordinated water ligand. This in turn is followed by the concomitant bond forming and bond breaking process via a three-center ring transition state, in contrast to the Csp3Me-OAc coupling, which had taken place by an outer sphere SN2 type RE reaction in methyl complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.