Abstract

A novel diatomite-based (DMT) material was obtained by post-functionalization of DMT/CoFe2O4 with 3-aminothiophenol and applied to remove Hg(II) ions from aqueous solution. The obtained adsorbent of DMT/CoFe2O4-p-ATP was detected by various characterization means. The optimization of response surface methodology reveals that magnetic diatomite-based material of DMT/CoFe2O4-p-ATP has an optimal adsorption capability of 213.2mg/g towards Hg(II). The removal process of Hg(II) is fitted well to pseudo-second-order and Langmuir models, respectively, indicating that the adsorption process is controlled by monolayer chemisorption. DMT/CoFe2O4-p-ATP exhibits superior affinity towards Hg(II) through electrostatic attraction and surface chelation, compared with other coexisting heavy metal ions. Meanwhile, the prepared adsorbent DMT/CoFe2O4-p-ATP displays excellent recyclability, good magnetic separation performance, and satisfying stability. The as-prepared diatomite-based DMT/CoFe2O4-p-ATP can be a promising adsorbent for mercury ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call