Abstract

Patients with left ventricular assist device (LVAD) have poor exercise tolerance. We aimed to characterize relationship between right ventricular (RV) afterload and exercise capacity, RV reserve, and adaptation to load. Twelve well-compensated LVAD subjects underwent right heart catheterization at rest and during symptom-limited exercise. Cardiopulmonary exercise tests were also performed. Hemodynamics were compared with age- and sex-matched subjects with pulmonary arterial hypertension (PAH) and normal non-athletes. Hemodynamic changes were expressed as Δ(exercise - rest). At rest, LVAD subjects had normal biventricular pressures and cardiac output (CO). On exercise, despite similar increases in pulmonary artery wedge pressure (PAWP) between three groups, RV afterload increased only in LVAD cohort (pulmonary elastance [ΔEa] LVAD: 0.4, PAH: 0.1, normal: 0.1 mmHg/ml, p = 0.0024). This afterload increase coincided with the largest rise in right atrial pressure (RAP), lowest change in RV stroke work index, and smallest CO augmentation (ΔCO LVAD: 1.5, PAH: 4.3, normal: 5.7 L/min, p = 0.0014). Peak VO2 negatively correlated with RV afterload (Ea) (r = -0.8, p = 0.0101), while VE/VCO2 slope had the inverse correlation. During exercise, pulmonary artery pulsatility index worsened while RAP:PAWP ratio was unchanged in LVAD subjects. Well-compensated LVAD patients had poor RV reserve and adaptation to load on exercise compared with PAH and normal subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.