Abstract
Switching magnetization magnetic force microscopy (SM-MFM) is based on two-pass magnetic force microscopy with opposite orientation of tip magnetization between two scans. The sum of the scanned data with reversed tip magnetization depicts local van der Waals forces, and their di erence maps the local magnetic forces. Tip magnetization can be easily reversed in external magnetic eld during the scanning. The separation of the forces mapped enables scanning in close proximity of the sample (∼ 5 nm). Therefore, extremely high spatial resolution (10 nm) is achievable by the SM-MFM. Image phase resolution of the MFM method depends on various geometric parameters of the tip, such as tip length, its apex radius and taper angle. The parameters are determined by the evaporation process, within which the standard atomic force microscopy tips are coated with magnetic layer. In this work we show that the thickness of the coated layer is important for the SM-MFM spatial resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.