Abstract

ABSTRACTThe microwave spectrum of 3-bromo-1,1,1,2,2-pentafluoropropane has been observed using CP-FTMW spectroscopy. Potential energy scans have been performed and confirm the existence of two conformers – trans and gauche – for which further structural optimisations and electric field gradient calculations have been performed in order to get highly accurate nuclear quadrupole coupling constants for assignment purposes. The combination of multiple conformers and large nuclear quadrupole coupling constants produce a very dense spectrum at an estimated 1 transition/MHz, near the continuum limit. This spectral density makes it necessary to have very sophisticated computational approaches in order to get geometric and electronic structures that are very close to experimental observation. Analysis of the spectrum allowed for the assignment of the trans conformer, but the gauche proved to be prohibitive, although it is believed to be present in the current spectrum. Full analysis of the rotational spectroscopic parameters of two isotopologues – the79Br and81Br – have been observed and are reported. Geometric analysis of the experimentally observed conformer is also reported using Kraitchman coordinate and second moments arguments. Further analysis of the spectrum reveals the occurrence of dipole-forbidden, nuclear quadrupole allowed transitions with one forbidden transition possessing the first known x-type forbidden transition linkage pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.