Abstract

Experimental and ab initio molecular orbital techniques are developed for study of aluminum species with large quadrupole coupling constants to test structural models for methylaluminoxanes (MAO). The techniques are applied to nitrogen- and oxygen-containing complexes of aluminum and to solid MAO isolated from active commercial MAO preparations. (Aminato)- and (propanolato)aluminum clusters with 3-, 4-, and 6-coordinate aluminum sites are studied with three (27)Al NMR techniques optimized for large (27)Al quadrupole coupling constants: field-swept, frequency-stepped, and high-field MAS NMR. Four-membered (aminato)aluminum complexes with AlN(4) coordination yield slightly smaller C(q) values than similar AlN(2)C(2) sites: 12.2 vs 15.8 MHz. Planar 3-coordinate AlN(2)C sites have the largest C(q) values, 37 MHz. In all cases, molecular orbital calculations of the electric field gradient tensors yields C(q) and eta values that match with experiment, even for a large hexameric (aminato)aluminum cage. A D(3d) symmetry hexaaluminum oxane cluster, postulated as a model for MAO, yields a calculated C(q) of -23.7 MHz, eta = 0.7474, and predicts a spectrum that is too broad to match the field-swept NMR of methylaluminoxane, which shows at least three sites, all with C(q) values greater than 15 MHz but less than 21 MHz. Thus, the proposed hexaaluminum cluster, with its strained four-membered rings, is not a major component of MAO. However, calculations for dimers of the cage complex, either edge-bridged or face-bridged, show a much closer match to experiment. Also, MAO preparations differ, with a gel form of MAO having significantly larger (27)Al C(q) values than a nongel form, a conclusion reached on the basis of (27)Al NMR line widths in field-swept NMR spectra acquired from 13 to 24 T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.