Abstract

To regulate the safety protocols in nuclear facilities, radioactive aerosols have been extensively researched to understand their health impacts. However, most measured particle-size distributions remain at low resolutions, with the particle sizes ranging from nanometer to micrometer. This study combines the high-resolution detection of 500 size classes, ranging from 6 nm to 10 μm, for aerodynamic diameter distributions, with a regional lung deposition calculation. We applied the new approach to characterize particle-size distributions of aerosols generated during the plasma arc cutting of simulated non-radioactive steel alloy wastes. The high-resolution measured data were used to calculate the deposition ratios of the aerosols in different lung regions. The deposition ratios in the alveolar sacs contained the dominant particle sizes ranging from 0.01 to 0.1 μm. We determined the distribution of various metals using different vapor pressures of the alloying components and analyzed the uncertainties of lung deposition calculations using the low-resolution aerodynamic diameter data simultaneously. In high-resolution data, the changes in aerosols that can penetrate the blood system were better captured, correcting their potential risks by a maximum of 42%. The combined calculations can aid the enhancement of high-resolution measuring equipment to effectively manage radiation safety in nuclear facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.