Abstract
High-resolution seismic-reflection data have been used to a varying degree by geoscientists to interpret the history of marine sediment accumulations around Antarctica. Reconnaissance analysis of 1-, 3.5-, and 12-kHz data collected by the U.S. Geological Survey in the western Ross Sea has led to the identification of eight echo-character facies and six microtopographic facies in the sediment deposits that overlie the Ross Sea unconformity. Three depositional facies regions, each characterized by a particular assemblage of echo-character type and microtopographic facies, have been identified on the continental shelf. These suites of acoustic facies are the result of specific depositional processes that control type and accumulation of sediment in a region. Evidence of glacial processes and products is uncommon in regions 1 and 2, but is abundant in region 3. McMurdo Sound, region 1, is characterized by a monospecific set of acoustic facies. This unique assemblage probably represents turbidity current deposition in the western part of the basin. Most of the seafloor in region 2, from about latitude 77°S to 75°S, is deeper than 600 m below sealevel. The microtopographic facies and echo-character facies observed on the lower slopes and basin floor there reflect the thin deposits of pelagic sediments that have accumulated in the low-energy conditions that are typical of deep-water environments. In shallower water near the boundary with region 3, the signature of the acoustic facies is different from that in deeper water and probably indicates higher energy conditions or, perhaps, ice-related processes. Thick deposits of tills emplaced by lodgement during the most recent advance of the West Antarctic Ice Sheet are common from latitude 75°S to the northern boundary of the study area just south of Coulman Island (region 3). The signature of microtopographic facies in this region reflects the relief of the base of the grounded ice sheet prior to decoupling from the seafloor. Current winnowing and scour of shallow parts of the seafloor inhibits sediment deposition and maintains the irregular, hummocky relief that characterizes much of the region. Seafloor relief of this type in other polar areas could indicate the former presence of grounded ice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have