Abstract

We address the problem of high-resolution radar imaging in low signal-to-noise ratio (SNR) environments in an approximate Bayesian inference framework. First, the probabilistic graphical model is constructed by imposing the sparsity-promoting spike-and-slab prior to the distribution of scattering centers. Then, the model parameters and phase errors are estimated iteratively by expectation propagation (EP) and maximum likelihood (ML) estimation. Compared with the available imaging methods based on the numerical optimization and Bayesian inference, the proposed method has exhibited more flexibility in data representation and better performance in parameter estimation, particularly in sparse-aperture and low SNR scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call