7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1021/jp3128803
Copy DOIJournal: The Journal of Physical Chemistry A | Publication Date: Aug 19, 2013 |
Citations: 10 |
Aiming to provide approximate rotational constants for millimeter wave spectroscopists to identify the corresponding species in space, we have recorded the near-infrared spectra of the methylene cation CH2(+) and its deuterated isotopologues, CD2(+) and CHD+, using a high resolution and high sensitivity spectrometer. Detection of CH2(+) in space will shed light on interstellar chemistry as it is the intermediate between the abundant CH+ and yet to be observed CH3(+), which is important in the formation of larger organic molecules. CH2(+) and its deuterated isotopologues are also of special interest for theoretical studies because of their unique intramolecular dynamics, i.e., the Renner–Teller interaction and quasi-linearity. This paper will discuss several new bands of CH2(+), the Ã(0,5[11],0)0 ← X̃(0,0[0],0)1 and Ã(0,4[11],0)2 ← X̃(0,0[0],0)1 bands of CD2(+), which have been identified and analyzed, and the candidate lines for the Ã(0,4[10],0)1 ← X̃(0,0[1],0)0 band of CHD+, in comparison with the theoretical predictions by Bunker and colleagues.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.