Abstract
The authors demonstrate generation of high-resolution nanostructures using achromatic spatial frequency multiplication in the extreme ultraviolet wavelength region. The technique based on the achromatic Talbot effect is used for periodic transmission gratings under wideband illumination, enabling one- and two-dimensional nanopatterns with sub-20 nm feature sizes. The transmission masks with desired properties are fabricated with electron-beam lithography followed by electroplating of gold. Features sizes down to 12 nm are obtained. The presented technique provides high-throughput and large-area nanopatterning with great flexibility in tuning pattern parameters such as linewidth and dot size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.