Abstract
We propose and experimentally demonstrate a high-resolution, high-sensitivity liquid level sensor based on a multicore fiber (MCF) Michelson interferometer (MI), where the sensing fiber is securely affixed to a cantilever beam, such that liquid level variations will change the beam's curvature, meanwhile leading to a substantial phase difference between the two interfering arms of the MI, and the sensor is interrogated using a microwave photonics filter (MPF) system, which can provide greatly enhanced measurement resolution compared to the traditional optical wavelength demodulation methods. The angular position of the MCF is precisely calibrated to ensure optimal sensitivity of the MI sensor. As a result, within a measurement range of up to ±14 cm, the proposed liquid level sensor achieves a sensitivity of 10.35 MHz/cm and an impressive resolution of 0.04835 cm. The proposed sensor has unique advantages of high sensitivity, superior resolution, long-term stability, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.