Abstract

During the past several years, high spatial and spectral resolution molecular spectroscopy has greatly contributed to our knowledge of the physics, dynamics and chemistry of interstellar molecular clouds and thus has led to a better understanding of the conditions that lead to star formation. According to their physical properties, molecular clouds can be grouped into four different types: (i) the dark clouds, (ii) the molecular clouds associated with H+ regions, (iii) the ‘protostellar’ (or maser) environment, and (iv) the molecular envelopes of late-type stars. The first three types of cloud contain generally active regions of star formation. As typical examples the properties are discussed of individual clouds such as TMC 1 and L 183 for the cold clouds, S 140 and S 106 for the warm dark clouds with embedded infrared source, and Orion A for a region with associated H+ region. In S 140, NH 3 is clumped on a scale of not more than 20", whereas recent observations towards Orion A with the Very Large Array show that NH 3 clumps on a scale smaller than 5".

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.