Abstract
AbstractHigher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10‐4. Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.