Abstract

The investigation of eight Cretaceous-Tertiary (K/T) sections in Mexico, based on major and trace element, platinum group element (PGE), stable isotope, and multivariate statistical analysis, reveals a complex depositional history across the Chicxulub and K/T boundary events. At the biostratigraphically determined K/T boundary, a minor but significant Ir-dominated PGE anomaly (0.2–0.8 ng/g) is present in most sections. This Ir anomaly originated from an impact event and is always stratigraphically and geochemically decoupled from the underlying spherule-rich ejecta deposit related to the Chicxulub event. In all sections examined, one to three glass spherule ejecta layers and one or two chondrite-dominated PGE anomalies are separated by a bioturbated siliciclastic deposit and/or hemipelagic marl, which indicates the occurrence of at least two impact events separated by a considerable amount of time. In addition, bentonite layers and Pt and Pd-dominated PGE anomalies below and above the K/T boundary indicate volcanic activity. Above the K/T boundary, reduced bioproductivity is documented by a decrease in the biogenically bound fraction of nutrients and fluctuating ratios of immobile elements (e.g., Ti/Zr). Variations in detrital elements reflect changes in the depositional environment. Carbon and oxygen isotope and trace element distribution patterns indicate a gradually changing climate during the latest Maastrichtian, an abrupt change at the K/T boundary, and a slight recovery during the lowermost Paleocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call