Abstract

Monitoring of chemical water quality is extremely challenging due to the large variety of compounds and the presence of biologically active compounds with unknown chemical identity. Previously, we developed a high resolution Effect-Directed Analysis (EDA) platform that combines liquid chromatography with high resolution mass spectrometry and parallel bioassay detection. In this study, the platform is combined with CALUX bioassays for (anti)androgenic, estrogenic and glucocorticoid activities, and the performance of the platform is evaluated. It appeared to render very repeatable results, with high recoveries of spiked compounds and high consistency between the mass spectrometric and bioassay results. Application of the platform to wastewater treatment plant effluent and surface water samples led to the identification of several compounds contributing to the measured activities. Eventually, a workflow is proposed for the application of the platform in a routine monitoring context. The workflow divides the platform into four phases, of which one to all can be performed depending on the research question and the results obtained. This allows one to make a balance between the effort put into the platform and the certainty and depth by which active compounds will be identified. The EDA platform is a valuable tool to identify unknown bioactive compounds, both in an academic setting as in the context of legislative, governmental or routine monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call