Abstract

Conventional optical fiber temperature/strain sensors often have to make compromises between the resolution and the dynamic range. Here we present a new method that meets the measurement requirements for both high resolution and large dynamic range. A high-quality optical fiber Fabry-Perot Interferometer (FPI) constructed using a pair of chirped fiber Bragg gratings is employed as the sensor and a dual-mode direct spectrum interrogation method is proposed to identify the small drift of external temperature or strain. As a proof-of-concept illustration, a temperature resolution of 0.2 °C within 30–130 °C is demonstrated. For strain sensing, the resolution can be 10 µε within 0–1000 µε. The measurement resolution can be improved further by routinely increasing the reflectivity of the CFBG and the cavity length and the sensor can also be mass-produced. This new sensing schema not only resolves the conflict between the resolution and the dynamic range of fiber-optic temperature/strain sensors but can also be extended to other sensors and measurands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.