Abstract

Measurement resolution and dynamic range of conventional optical fiber sensors are often mutually restricted. In this work, an in-fiber chirped Fabry-Perot cavity (interferometer) is proposed, for the first time to our knowledge, to resolve the conflict between the resolution and dynamic range. The chirped Fabry-Perot interferometer is constructed by two chirped fiber Bragg gratings inscribed in the opposite directions, resulting in a gradually varied (i.e., chirp) cavity length for different reflection wavelengths. As such, the interference spectrum exhibits high figure of merit (FOM) and large free spectrum range (FSR) at long and short wavelength regions, respectively, enabling high-resolution and large-dynamic-range measurement simultaneously. Temperature tests are then carried out to confirm the validity of the solution. The proposed sensing schema may be developed further and find vital applications in biomedicine fields such as endosomatic temperature monitoring of living bodies. The proposed concept of chirped Fabry-Perot interferometer can provide breakout ideas for other sensing scenarios where high-resolution and large-dynamic range are demanded and can be further generalized to other measurands or even free-space interference metrologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.