Abstract

This paper presents a highly-sensitive, miniature, all-silica, dual parameter fiber-optic Fabry-Perot sensor, which is suitable for independent measurement of the refractive index and the temperature of the fluid surrounding the sensor. The experimental sensor was produced by a micromachining process based on the selective etching of doped silica glass and a simple assembly procedure that included fiber cleaving, splicing and etching of optical fibers. The presented sensor also allows for direct compensation of the temperature's effect on the fluid's refractive index change and consequently provides opportunities for the detection of very small changes in the surrounding fluid's composition. A measurement resolution of 2x10(-7) RIU was demonstrated experimentally for a component of the refractive index that is related purely to the fluid's composition. This resolution was achieved under non-stabilized temperature conditions. The temperature resolution of the sensor proved to be about 10(-3) °C. These high resolution measurements were obtained by phase-tracking of characteristic components in a Fourier transform of sensor's optical spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.