Abstract

We applied an imaging optical system and convolution analysis to a one-shot 3D imaging method with a chirped optical frequency comb to greatly improve the transverse spatial resolution and depth accuracy. We obtained the high contrast spectral interference of a diffusive surface using the designed lens system and developed a simple and robust analysis technique using convolution of an obtained the interference fringe. The developed method was demonstrated to realize submicron-level uncertainty for the depth measurement. When applied to the surface structure of a coin, it demonstrated a transverse spatial resolution of 8.98 lp/mm and depth resolution of 0.35 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.