Abstract

We present an ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy (SD-OCPM) system that combines submicrometer transverse spatial resolution and subnanometer optical path length sensitivity, with an acquisition speed of over 217,000 voxels/s. The proposed SD-OCPM system overcomes two significant drawbacks of traditional common-path interferometers-limited transverse spatial resolution and suboptimal detection sensitivity-while maintaining phase stability that is comparable with common-path interferometer setups. The transverse and axial spatial resolution of the setup is measured to be 0.6 and 1.9 μm, respectively, with a phase sensitivity of 0.0027 rad (corresponds to optical path length sensitivity of 110 pm). High-speed acquisition allows for phase-sensitive 4D imaging of biological samples with subcellular resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.