Abstract

Manufacturing all dielectric mirror coating with reflectivity values of more than 99.99 % is still a challenge to achieve. Losses caused either be transmittance, absorption or scattering have to be maintained well below 100ppm. Increasing the layer number for minimizing the transmittance losses usually increases the scattering by the growth of the roughness. High energy processes are required to minimize or avoid this behavior, but which are a challenge for avoiding unwanted contamination and interface absorption due to unwanted sputtering. As high energy process we used for the preparation of high reflecting dielectric mirrors plasma assisted reactive magnetron sputtering with a Helios 800 system. The machine was equipped with 3 cathode position for low and high index materials. We used metallic tantalum and hafnium targets for the preparation of the high index, silicon and silica targets for the low index. Metallic targets were powered with mid frequency, whereas the quartz target was sputtered by RF. As substrate we used either super polished fused silica or standard silicon wafer. The optical properties of the substrates we characterized by CRD, Laser calorimetry and spectrophotometric measurements. All combination allowed us to reach reflectivity values above 99.99%, with total deficit levels as low as 36ppm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.