Abstract

Because of the poor real-time performance of in-place fast Fourier transforms, a reconfigurable radix-4 FFT processor is studied and designed, which is based on decimation-in-time and single floating-point computation. The proposed method adopts “pipeline and parallel” structure for accessing multiple memories to improve the FFT processing speed, and then it is applied to digital pulse compression. The experimental result shows that the proposed FFT based on radix-4 computation can implement digital pulse compression rapidly under no adding hardware resources. The proposed method can be also applied to other radix FFTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.