Abstract

We have developed a high-quality growth process for 3C-SiC on on-axis (111)Si substrates with the ultimate goal to demonstrate high quality and yield electronic and MEMS devices. A single-side polished 50 mm (111)Si wafer was loaded into a hot-wall SiC CVD reactor for growth. The 3C-SiC process was performed in two stages: carbonization in propane and hydrogen at 1135°C and 400 Torr followed by growth at 1380°C and 100 Torr. X-ray diffraction rocking curve analysis of the 3C-SiC(222) peak indicates a FWHM value of 219 arcsec. This is a very interesting result given that the film thickness was only 2 µm, thus indicating that the grown film is of very high quality compared with published literature values. X-ray polar figure mapping was performed and it was observed that the micro twin content was below the detection limit. Therefore TEM characterization was performed in plan view to allow assessment of the stacking fault density as well as confirmation of the very low micro twin concentration in this film. TEM analysis indicates a low concentration of stacking faults in the range of 104 cm-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call