Abstract
Field-collected specimens were used to obtain nine high-quality genome assemblies from a total of 10 insect species native to prairies and savannas of central Illinois (USA): Mellilla xanthometata (Lepidoptera: Geometridae), Stenolophus ochropezus (Coleoptera: Carabidae), Forcipata loca (Hemiptera: Cicadellidae), Coelinius sp. (Hymenoptera: Braconidae), Thaumatomyia glabra (Diptera: Chloropidae), Brachynemurus abdominalus (Neuroptera: Myrmeleontidae), Catonia carolina (Hemiptera: Achilidae), Oncometopia orbona (Hemiptera: Cicadellidae), Flexamia atlantica (Hemiptera: Cicadellidae) and Stictocephala bisonia (Hemiptera: Membracidae). Sequencing library preparation from single specimens was successful despite extremely small DNA yields (<0.1 μg) for some samples. Additional sequencing and assembly workflows were adapted to each sample depending on the initial DNA yield. PacBio circular consensus (CCS/HiFi) or continuous long reads (CLR) libraries were used to sequence DNA fragments up to 50 kb in length, with Illumina sequenced linked-reads (TellSeq libraries) and Omni-C libraries used for scaffolding and gap-filling. Assembled genome sizes ranged from 135 MB to 3.2 GB. The number of assembled scaffolds ranged from 47 to >13,000, with the longest scaffold per assembly ranging from ~23 to 439 Mb. Genome completeness was high, with BUSCO scores ranging from 85.5% completeness for the largest genome (Stictocephala bisonia) to 98.8% completeness for the smallest genome (Coelinius sp.). The unique content was estimated using RepeatMasker and GenomeScope2, which ranged from 50.7% to 75.8% and roughly decreased with increasing genome size. Structural annotation predicted a range of 19,281-72,469 protein models for sequenced species. Sequencing costs per genome at the time ranged from US$3-5k, averaged ~1600 CPU-hours on a high-performance cluster and required approximately 14 h of bioinformatics analyses with samples using PacBio HiFi data. Most assemblies would benefit from further manual curation to correct possible scaffold misjoins and translocations suggested by off-diagonal or depleted signals in Omni-C contact maps.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have