Abstract

We demonstrate for the first time an entirely molecular beam epitaxy (MBE) approach to high-quality GaAs planar coalescence over embedded dielectric microstructures. Specifically, an all-MBE approach was achieved by developing a new two-stage growth process, merging the MBE growth regimes of III-flux modulated lateral epitaxial overgrowth (LEO) with self-ordered planarization of nonplanar substrates to produce highly selective planar coalescence specifically for embedding [010]-aligned silica gratings patterned on (001) substrates. The resulting planar coalescence returned a smooth (001) surface with surface roughness as low as 3 nm root-mean-square and photoluminescence (PL) equivalent to grating-free controls. In demonstrating high-quality GaAs coalescence, we also report for the first time an intentionally enhanced single InGaAs/GaAs/AlAs quantum well PL test structure seamlessly grown directly above embedded silica gratings, leading to a 1.4× enhancement in PL as a result of both Purcell and extractio...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call