Abstract

High quality (Q) factor, tunable unidirectional guided resonances (UGRs) based on a silicon-on-lithium niobate (Si-on-LN) photonic crystal (PhC) slab are proposed and numerically investigated. The Q factors of UGRs decay quadratically with respect to the distance from the Γ point to the wave vector along the Γ-X direction, and high Q factor UGRs are obtained by moving UGR close to the Γ point. Also, a Gires-Tournois interferometer (GTI) based on a UGR with a Q factor of 9465 is numerically demonstrated, which produces a maximum group delay of 30 ps around 1.55 μm with unitary reflectance. The group delay and operation wavelengths of the GTI can be adjusted effectively by tuning the refractive index of lithium niobate (LN) and the periods of the silicon bars. Our study may find applications in PhC surface-emitting lasers, dispersion compensation, and compression of light pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.