Abstract

A study of depositing high quality c-axis oriented polycrystalline aluminum nitride thin film at room temperature was presented. Aluminum nitride films were grown by mid-frequency (MF) reactive sputtering. Metallic aluminum target was used to deposit AlN films in Ar/N2 gas mixture. A 50nm thick of N-rich AlN buffer layer was deposited at the initial stage of sputtering process to improve the film quality. The composition, preferred orientation and residual stress of the films were analyzed by EDS, XRD and Raman microscope, respectively. The results showed that the N-rich AlN buffer layer improved the textured degree and reduced the residual stress significantly of the AlN thin films. The near stoichiometric AlN thin film with highly textured degree was obtained. The FWHM value of the rocking curve for (0002) diffraction peak was about 1.6°, and the residual tensile stress was about 500MPa. The piezoelectric d33 coefficient increased with the decreasing of FWHM value, and the highest d33 coefficient of 3.6 pF/C was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.