Abstract
An apparatus based on the static-analytic method was used to measure the vapor–liquid equilibria (VLE) for CO 2 + alkanol systems. Equilibrium measurements for the CO 2 + 1-propanol system were performed from 344 to 426 K. For the case of the CO 2 + 2-propanol system, measurements were made from 334 to 443 K, and for the CO 2 + 1-butanol were obtained from 354 to 430 K. VLE data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules. Moreover, compressed liquid densities for the n-dodecane and n-tridecane were obtained via a vibrating tube densitometer at temperatures from 313 to 363 K and pressures up to 25 MPa. The Starling and Han (BWRS), and The five-parameter Modified Toscani-Swarcz (MTS) equations were used to correlate them. The experimental density data were compared with those from literature, and with the calculated values obtained from available equations for these n-alkanes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.