Abstract
High-pressure vapor-liquid equilibrium measurements of CO{sub 2} + alkanol systems are of interest due to their importance in the supercritical extraction of thermally labile compounds, dehydration of alcohols using supercritical carbon dioxide, and extraction of natural products using near critical solvents. Vapor-liquid equilibria for CO{sub 2} + 1-propanol mixtures have been measured at 315.0, 326.5, and 337. K using a high-pressure flow apparatus. The pressure in the experiments varied from 26.38 to 89.7 MPa. Data at 315.0 K were found to be significantly different from the data reported by Suzuki et and Yao et al. However, the results at 337.2 K are in good agreement with the results of Suzuki et al and the data appear to be more consistent with the trends exhibited by other CO{sub 2} + 1-alkanol mixture The data were correlated with Patel-Teja and Peng-Robinson equations of state using classical van de Waals one-fluid mixing rules and with the Peng-Robinson-Stryjek-Vera equation of state using the Wong-Sandler mixing rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.