Abstract

The chemical transformation of benzene under pressure is investigated, at room temperature and at 100 K, by means of infrared spectroscopy. Pressurization-decompression cycles in the 0–50 GPa pressure range have been performed to achieve the complete transformation of the monomer. The yellow-brownish recovered sample has been identified as an amorphous hydrogenated carbon (a-C:H). A correlation has been established between the pressure behavior of the frequencies of both Raman and infrared internal modes, and the corresponding vibrational energies in the S1 excited state (1B2u). From this comparison we conclude that pressure induces a mixing between the ground and the S1 electronic states. The increased ring flexibility enhances the interactions among nearest-neighbor molecules inducing the formation of a network of interconnected benzene units where the aromatic character is lost. The bond breaking mainly occurs during the decompression cycle favored by the density decrease. Radical species form in this stage and rapidly propagate to give the denser a-C:H final product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.