Abstract

AbstractA mathematical model of the high pressure polymerization of ethylene in tubular reactors was tested with experimental data obtained from an industrial size tubular reactor. Series of experiments involving changes in operating conditions were carried out, and process data and polyethylene samples were collected. The collected samples were characterized for their molecular weight distributions and various rheological material functions involving shear and extensional flows. The findings of the model were compared against the generated process data and the molecular weight distributions of the samples. The determined rheological behavior exhibited strong dependence on the primary characteristics of the resins. Overall, this study should introduce a better understanding of the interactions between high pressure reaction conditions and the primary properties of polyethylene, including moments of molecular weight distribution and extent of branching on one hand and the interrelationships between primary properties and the rheological behavior of the high pressure polyethylene product on the other hand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.