Abstract

High-pressure vapor–liquid equilibria for the binary carbon dioxide–2-methyl-1-butanol and carbon dioxide–2-methyl-2-butanol systems were measured at 313.2 K. The phase equilibrium apparatus used in this work is of the circulation type in which the coexisting phases are recirculated, on-line sampled, and analyzed. The critical pressure and corresponding mole fraction of carbon dioxide for the binary carbon dioxide–2-methyl-1-butanol system at 313.2 K were found to be 8.36 MPa and 0.980, respectively. The critical point of the binary carbon dioxide–2-methyl-2-butanol was also found 8.15 MPa and 0.970 mole fraction of carbon dioxide. In addition, the phase equilibria of the ternary carbon dioxide–2-methyl-1-butanol–water and carbon dioxide–2-methyl-2-butanol–water systems were measured at 313.2 K and several pressures. These ternary systems showed the liquid–liquid–vapor phase behavior over the range of pressure up to their critical point. The binary equilibrium data were all reasonably well correlated with the Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), Peng–Robinson (PR), and Patel–Teja (PT) equations of state with eight different mixing rules the van der Waals, Panagiotopoulos–Reid (P&R), and six Huron–Vidal type mixing rules with UNIQUAC parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.