Abstract

We study the structural and vibrational properties of the high-temperature superconducting sulfur trihydride and trideuteride in the high-pressure $Im\bar{3}m$ and $R3m$ phases by first-principles density-functional-theory calculations. On lowering pressure, the rhombohedral transition $Im\bar{3}m \rightarrow R3m$ is expected, with hydrogen bond desymmetrization and occurrence of trigonal lattice distortion. In hydrostatic conditions we find that, contrary to what suggested in some recent experiments, if the rhombohedral distortion exists it affects mainly the hydrogen-bonds, whereas the resulting cell distortion is minimal. We estimate that the occurrence of a stress anisotropy of approximately $10\%$ could explain this discrepancy. Assuming hydrostatic conditions, we calculate the critical pressure at which the rhombohedral transition occurs. Quantum and anharmonic effects, which are relevant in this system, are included at nonperturbative level with the stochastic self-consistent harmonic approximation (SSCHA). Within this approach, we determine the transition pressure by calculating the free energy Hessian. We find that quantum anharmonic effects are responsible for a strong reduction of the critical pressure with respect to the one obtained with the classical harmonic approach. Moreover, we observe a prominent isotope effect, as we estimate higher pressure transition for D${}_3$S than for H${}_3$S. Finally, within SSCHA we calculate the anharmonic phonon spectral functions in the $Im\bar{3}m$ phase. The strong anharmonicity of the system is confirmed by the occurrence of very large anharmonic broadenings leading to complex non-Lorentzian line shapes. However, for the vibrational spectra at zone center, accessible e.g. by infrared spectroscopy, the broadenings are very small (linewidth at most around 2~meV) and anharmonic phonon quasiparticles are well defined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.